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DESIGNING OF THE MAGNETIC SYSTEM
BY THE SOLUTION OF INVERSE PROBLEM

E.P.Zhidkov, S.Lima, R.V.Polyakova, I.P.Yudin

In this paper the problem of searching for the design of the magnetic system
for creation of a magnetic field with the required characteristics in the given area
is solved. On the basis of the analysis of the mathematical model of the magnetic
system rather a general approach is proposed to the solving of the inverse probiem,
which is written by the Fredholm equation:

Hiz)=f (I Gs)ds, zeU, sEs,

where J(s) is a distributed density function of current in the system, G(z,s)isa
Green function, the analytical form of the function depending on the current
source geomeltry and on z point, falling into the definition area of field H. 1t was
necessary to define the current density distribution function J(s) and the existing
winding geometry for creation of a required magnetic field. It is known that such
problems are incorrect ones. In the paper a method of solving those by means of
regularized iterative processes is proposed. On the base of the concrete magnetic
system we perform the numerical study of influence of different factors on the
character of the magnetic field being designed.

The investigation has been performed at the Laboratory of Computing Tech-
niques and Automation, JINR.

KoHcrpyupoBauue MarauTHolM cucTeMs
NpH MOMOUIM PELIEHN st O0PATHOM 3a8a4M MATHUTOCTATHKHM

E.I1.XunkoB u ap.

B nanHo#M paGote pewaercs 3azaua nomcka KOHCTPYKUHMH MATHUTHOM CHC-
TEMbl IS CO3JAHNS MATHHMTHOIO NOAg ¢ TpeOyeMbIMU XapaKTEPUCTHKAMU B
3apaHHOM obnacTn. Ha ocHoBe aHanM3a MaTeMaTHUECKOH MOAEAM MATHMTHOMN
CHCTEMBI NPEVIATAETCS AOCTATOMHO OGUWMIA NOAXOA K PEIMEHUIO HEJMHENHOM
obpaTHOM 3a1a4m, KOTOPAs OMUCHIBAETCH YPABHEHUEM Dpegronsma:

H(z) = fs J(s)G(z,s)ds, zE U, sE S,

rac J(s) — dyuxkuus pacnpeaenenns nioTHOCTH TOKa B cucteme, G(z,s) —
GyHkuns TpyHa, aHAINTHUECKHIT BUA KOTOPO# 3ABUCHT OT FEOMETPHH HCTOM-
HHMKOB TOKAa M OT TOMKM Z, npunapiexawmei obnactu onpeaenenus nons H.
Heobxoaumo onpenenntsh pacnpeaescHme rioTHOCTH TOKa J(s), a Takxe pac-
CTRHOBKY MCTOYHUKOB TOKA L1s CO3aaHust rosis H. UasecTHo, uTO TaKHeE 3aiaum
OTHOCSATCH K K/IACCY HEKOPPEKTHbIX 3a/iay. B pabore npepnaraercs meTon pewe-
HMS 3TUX 337124 C NOMOWILIO PEryISPHM30BAHHBIX UTEPALMOHHBIX Npoueccos. Ha
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HPHMEPE KOHKPCTHON MATHUTHOM CHCTEMBL IPOBOMTCH AMCIIEHHOE UCCEA0BA -
HHUE BAMIHHS PAAUHBIX PAKTOPOB HA XAPAKTEDP CO3AABAEMOTO MATHMTHORO
1o,

Pa6ora seutoancua 8 J1aGopaTophi BINMCAMTEABHONR TEXHMKH H ABTOMATH-

3aumnn OUAN.

!. Introduction

When designing magnetic system, it is necessary to solve the inverse
problem, that is, via a given magnetic field to define current parameters,
or its geometrical characteristics, or all that simultaneously.

The definition of the becam density distribution in the magnetic sys-
tem, in which the geometry is known, is a linear inverse problem for
the given field.

When the required field must be created with the help of conductors,
in which the value of the curent varies similar to the coordinates of
their position, providing the current in all the conductors is the same,
we come to the solving of the inverse problem.

In this paper we consider the construction of a mathematical model
of the magnetic system for this kind of the problem and the methods
and numerical algorithms for their solution by using the Tikhonov regu-
larization methods.

Because a magnetic ficld is supposed to be given by one of its
(Hx, Hy, H ) components depending on a specific problem, so further H

sample will be used for notation.

2. Mathematical Model
of the Magnetic System

Let in a region U with the help of the sources of current, distributed
in the region §, a field H should be created with the given characteristics
(for example, the whole homogeneous field in the region U). It is known
[1] that the field in any point z of set U is defined by the expression

H@)=[ J()G(z5)ds, z€U, s€S, )
where J(s) is a distributed density function of the current in the system,

G (z, s) is a Green function, that analytically depends both on the geo-
metry of the source of the magnetic system and on the point z € U.
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The inverse problem, namely, a definition over the given density of
distribution of current in the magnetic system with the known geometry,
is a linear inverse problem (model 1).

Then the mathematical problem reduces to the solution of the Fred-
holm linear integral equation of the first order with unknown function
J(s).

If the composition of the magnetic field includes not only variant
density of current and arrangement source of current, then we must
solve the nonlinear inverse problem (model 2) with unknown J(s) and
sESS.

3. Method of Solution
of the Inverse Problem (Model 1)

It is known that the problem of solution of the first order Fredholm
integral equation (1) is related to the non-correct defined class of the
problems, because the large changing in the J(s) solution can correspond
to the small changing of the input data H(z). To obtain a stable solution
of the non-correct defined problem, A.N.Tikhonov developed a regu-
larized algorithm [2]—[4].

Here we will use the second order method of a regularization in order
to solve the problem.

For this, we consiruct a smooth parametric functional

F* U(s), H2) =@ [J(s), HZ) | +a Q [(s) ], @
where
D), H@) = [ 1H () ~ [ J(s) G(z,5) ds 1 dz A
is the quadratic deviation of the operator A [z J(s)I=
= /() G(z,5) ds of function H(z), and
QUE =] J(s)ds @)
is the regularizational functional, or a stable one, and a is a numeric

parameter of the regularization (a > 0).
Theorem 1. For any function H(z) € L, and for any a >0 there exists

one and only one 2(n + 1) differential function Jf:(s), which realizes

the minimum of the smooth functional 7 [/(s), H(z)], of the form (2).
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Theorem 2. 1t H(z) = Alz, J(s) ], J(s) € C"* D then for any ¢ >0 and
auxiliary valucs 0<y, <y, there exists o (e, 7,75 J) so that, if

I. =11 Hg(2) = "H(2) | IL) =9, where Hy(z) € Ly;

2. —a =a(d) has the order 8%
2
3. — Y, s a—d(é‘) < yz,
then J‘g' n (8) is a minimum of F' |J7 (s), Hy (z)] and
g 9 -0 @i se, ses, i=1,2,.n
with o< 60 (€775 I)-
For this thecorem we inference that there exists a function S5, that

is a minimum of functional F"I in the form (2) which reduces to the

solution of the cquation (1) J(s). The complcte demonstration of this
and other conditions onc finds in [4].
When applying the regularization method, the sclection of parameter
a is onc of the main problems.
The point is that not always for the obtained smooth solution the
discrepancy principle is being fulfilled, i.c. there exists the incquality
lWHy— H™Il <0, (R

where o is precision of the approximate input data ﬁa, H" is the precise
value of the input data.

In practice, for the solution of the non-correct problem it is necessary
to find the solution, that satisfics the required precision. In [5]
V.A.Morozov suggested, as the main quality criteria, to sclect the regu-
larization paramcter of the deflection principle.

Discrepancy Principle. Sct any 0< 3 < 3, and any 0<h < h,, with con-
dition

» 1/2
x(h,o0,J)= (I 1A J — AJ) o)X (1 +B@,h) "< A, — ﬁdl Lo

where (3, A) is a positive function, such that timg , B, h) =0, and

J% is the solution obtained for the minimum of functional F* /, H).
Then there exists at least one value of the regularization parameter
a=a(d, h)>0, so that

Pay (@ B, b)) = x% (h, 8, 1),
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and

4. Numerical Algorithm for the Solution
of the Problem of Model |

In the expression (2), if prescnting the integral in the form of sums,

we obtain
2

F¢ = 2 H.(z) - 2 T (s) K (zps)
j=1 0)
M
Az+a R J? (s) As,,
i=1
where N is a number of points from the set U, M is a number of poinis
from the set §, M < N and Kl,j = fAS G(zj, s) ds.

Suppose As; = As = const, Azj = Az = const.

The condition of the minimum of the functional F® is

oF* aF* IF”

aJl =0, E:O,..., -—()J "O (7)

Taking into account (6), we obtain

IF” ad
—6—17=— 2 H K Az + Zl Eljx K;Az+alA =0,
j=1li=

=1+ M. 3

In such a way we have a system M linear algebraic equations with
the unknowns N of the J, form:

M N N
24 2 KK bz+alAs= 3 H KAz, I=s1+M. (9
i=1 j=1 ji=1

Supposing a A s=a’ Az, we obtain

EJZKK +aJAs_2H1< I=1+M. 10
i=1 j=1 i=1
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Obviously, a’ serves the meaning of arbitrary coefficient «, therefore
the system of equations for J, we can write finally definitively in the

form
M N

N
21 J; .E] KK, +a./l=.ElHjK[j, I=1+ M. (11)
i= Jj= /=

If the magnetic system is a discrete set of coils, then the field
H(z) in any point z € U is defined in the following way:

M
HE@ = 3 4, J, G(zs)ds, (12)
i=1 i

where M is a number of coils, J,. is the current density in the i-th coil,
As,. is the selection of the i-th coil.

Having solved the system of equations (11), we obtain a discrete set
JI, =1+ M, that is a solution of the problem (1). Similar to that, we

define the distribution of the current density in the magnetic system
for creation of field H(zj.), j=1+N, sz U.

5. Particular Case of the Mathematical Model 2

Let in some region S with a disposition M of conductors with the
same current [, the field H be created.

In the system H(z), z € U we have

M
H(z)=10'2 G(sp2), (13

i=1
where G (s; z) is the Green function for the i-th conductor.
Both a current 10 and the coordinates S; of the conductors, which

would provide the given field H(z), z€ U in a best way, should be

defined.
The function G (s; z) is usually a nonlinear one concerning the co-

ordinate of the conductors s;» therefore the analysed problem is a non-

linear inverse problem.
Additional difficulty in the solving of the inverse problem is the res-
triction in the parameters [6). However in any particular case one can
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efficiently find a solution for the given condition of the problem. Let
us consider this case.

Let a parameter of the conductors disposition in the region S be only
one coordinate, for example x, the region of disposition of the con-

ductors in the axis x being known, X Sx,sx

Then the equation (13) will have the form:

2

M
H(z) = 10.2 G(x,2), zEU, x, = x, < X, 14)

i=1
We must define 1, x; to create the field H(z), z € U, in the magnetic

system. The problem (14) is a non-linear inverse problem.

6. Numeric Algorithm of the Solution
of thc Problem in Model 2

The solution of the problem (14) was divided into two steps. In the
first step, the current density in the twisters is continuously distributed
in the range of the given problem. The equation (13) has the form

X
H(z) = f: J(x) G (x, z) dx.
i
This problem and the algorithm of its solution was analysed in the

points 2, 3. To select the solution J%(x), (a is the regularization para-
meter) we calculate the following conditions of the problem:

1. The precision of the calculation of H(z) cannot be worse than the
required precision of the magnetic field in the created magnetic system;

2, For all permissible interval [xl,x2 ], a function J%(x) must keep
the sign;

3. ) = Jdop is the permissible current density.

Suppose, that there exists a continuous solution J%(x), that satisfies
all three conditions.

In the second step, we divide the interval lxl, x2] in M subintervals

Poiy s .
[xl,le,l—l - M.

Then

i
X

M
Hiz)= Y fx,2 Jx) G (x, 2) dx, zE U. 15

i=1 i
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For cach subinterval [x';, .vc"2 ], the conditions of the thcorems about

the mean value (as function J“(x) was chosen) are satisfied, therefore

. M X
HE)= 3 6 (hz) [ Idx, J=1+N, (16)
= 1
where N is a number of points in the region U, in which field H is
analyscd, \'I' is a point in the i-th intervals. The limits x';,x;, were
choscn in order 1o
i i+
f:,z J(x)dx = f'\_i. Ji(x)dx = Iy, ie.,
1

X
[ r s (17>
1
lo=—"m >
then
M .
H(z) =1y 2 G(x],2). (18)

i=1
Obviously, for different z; there exists its point ’c:, but based on the

theorem of the mcan values it always is in the intervals [x';,.»ci2 ]. This
mcans that unknown coordinate x; is too in the i-th interval and it is

defined from the condition of minimum of the functional

N [ X -2
2 X
p(x) = 2 J i 70 G (x, 2) dx =[G (x;, 2)
/=ti oo ] (19)
p(x) N T 5 ;
ax, = j;l f‘; J(x) G (x, zj) dx — IOG (xi, Zj) x
0G(x,, z))
X —_t =
Jdx.
1]
x’i Sx < x'2 (20)
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Then the solution of the problem is reduced to the solving of M
scquential nonlinear equations in the form (20) with one unknown, mo-
rcover, the limits of the cxistence of the solution are known.

Note that we have analyzed the algorithms for creating a magnetic
system with infinitc thin conductor.

It’s easy to demonstrate that for the finite size of the conductor the
algorithms completely keep, only in this case the Green function goes
under the sign of integration by the section of the conductor.

When the permissible geometrical region of arranging the conductor
defines as the nonlinear one, the density does not involve particular
difficulties, too, and can be described by the similar algorithm.

7. Example of a Numerical
Calculation of Rcal Magnetic System

Let us see an example of practically developed application of the algo-
rithm to create non-metallic superconductor (SP) of the bipolar magnet,
that was composed by triangular winding of excitement (its geometry
is shown in Fig.l).

From Fig.1 it is obvious that the magnetic system was composed by
triangular winding and it has a perimeter dimension of the aperture of
magnet. :

Using the developed numerical algorithm for the nonlinear inverse
solution we calculate thc¢ mathematical model of the system, with a
homogeneous field in which 809% of the aperture represent
1075 + 107° for the magnitude of file 4—3J.

The mathematical problem was set in the following mode.

Let in some region (sec Fig.1a) an homogeneous ficld H(z), z €U be
created, using an arrangement M of the conductors of the triangular
section in the given limited region § with condition that the current
i, for ali conductors is the same. For this magnetic system

¥ Qn
H(z) =10.2 G(sp2), 5;ES, z€U.

i=1

In Descartes system of coordinates s; = {xl., y,.l, z= {x, y}
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(x—x + a)2 +-yt b)2 22

Gpn=t" 0, +
K 2 (x—x, — a)2 +( -yt b)2 '
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+ (¥ = x; +a) X |arctg m — arctg m
X—x.—a x—x,—a
+ (x—x; —a) X jarctg m - arclgy—_yin— )

where a is the half-dimension of the tire along x, is the half-dimension
of the tire along y, is the Green function for the triangular tire in the
Descartes system of coordinates |1}

=N _+N,
X ¥

N, is the number of the creep tire of axis x, N, is the number of the

creep tire of axis y, or

k is the number of the winding blocks, and N, is the number of the

creeps in the 1-th blocks.
We must define not only /1, but undetermine the block configuration

that forms the homogencous ficld H(z) for every point z € U with a
precision non less 1070 = 1075,
In Fig.2 continuous distribution J‘: and J“f for M = 48 crcep and the

approximation of its continuous «blocks» function for cach subinterval
are given.

The Table contains the numecrical calculation for the optimal variant
of the magnet, an in Fig.1b the scheme of this magnet is presented.

8. Conclusion
1. In this paper we analyze the method of solving the nonlincar in-
verse problems which arc nccessary for the description of the mathe-

matical modcl of magnctic system of some class.
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2. The developed numerical algorithm, based on the method of regu-
larization of the solution of non-correct problems with restrictions in
the scarched parameters, is reduced to the nonlinear type of problem
(14) for the solution of M sequential nonlinear equations with one in-
cognita. It permits onc 1o avoid difficulties, related to the solution of
the system of the nonlincar equations. This solution is frequently redu-
ced to the inverse problem.

3. To realize the proposcd mcthod in a computer a numerical algo-
rithm was developed and a Fortran programs package was written.

4. Using this complex program, some practical problems [7], [8 ] were
solved, one of those was analyzed as an example in section 7.

5. The results of the numerical modeling of some real system were
uscd for designing and creating the supperconducting accelerator of High
Encrgy Laboratory, JINR.
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